Implications of the Evolution of Organic Acid Moieties for Basalt Weathering over Geological Time
نویسندگان
چکیده
Concentrations of organic acids in prebiotic soils were presumably low, given limitations in abiotic synthesis and the limited lifetimes of organic molecules before the ultraviolet shield developed on early Earth. Prokaryotes, the first landcolonizing organisms, commonly secrete aliphatic carboxylic acids, and, less extensively, secrete aromatic compounds as siderophores and antibiotics. In contrast, secretion of aromatic acids is considerable for fungi, lichens, and vascular plants. Aromatic acids are also produced by degradation of high-molecular-weight compounds from lignin and tannin, both abundant in vascular plants. The proportion of aromatic carboxylic acids in soil solutions therefore probably increased with the evolution of higher order organisms. As biomass of organisms increased over geological time, concentrations of organic acids in soil solutions and, in turn, the extent of ligandpromoted dissolution of minerals probably increased. To elucidate the contribution of ligands during weathering on early Earth, Columbia River basalt was dissolved under oxic and anoxic conditions in the presence (0.001 or 0.01 M) and absence of several organic ligands in batch experiments at pH 6. Release of all elements including Si was enhanced considerably in the presence of organic ligands. Citrate (tridentate) and gallate (tetradentate) increased element release to the greatest extent among the aliphatic and aromatic ligands, respectively. The extent of element mobilization observed for the aliphatic ligands decreased in the order: citrate > oxalate malonate, and for the aromatic ligands: gallate > salicylate phthalate. The effects of the ligands generally followed trends in cation-ligand stability constants, but aromatic ligands were less effective in element mobilization than aliphatic ligands. One exception was gallate, an aromatic ligand, which significantly enhanced Cu release. Ligand-promoted mobilization of Cu may therefore have increased over geological time with the increase in the proportion of aromatic ligands. In the presence of organic ligands, Fe was mobilized from basalt considerably more than Al even under oxic conditions. Complexation of Fe with organic ligands may have mobilized Fe in Precambrian paleosols where little Al mobility is observed. Extent of P and Y release was minor in ligand-free experiments and considerable with ligands regardless of PO2. Release of Cu was considerable under oxic conditions, especially with ligands, and minor under anoxic conditions. Mobility patterns of P and Y could thus possibly serve as “organomarkers” (indicative of prevalence of organic ligands in soil solutions) and mobility patterns of Cu could possibly serve as “oxymarkers” (indicative of the presence of molecular oxygen), respectively, in ancient soils.
منابع مشابه
Basalt weathering across scales
Weathering of silicate minerals impacts many geological and ecological processes. For example, the weathering of basalt contributes significantly to consumption of atmospheric carbon dioxide (CO2) and must be included in global calculations of such consumption over geological timeframes. Here we compare weathering advance rates for basalt (wD β ), where D and β indicate the scale at which the r...
متن کاملEvolution of carbon cycle over the past 100 million years
It is generally accepted that progressive cooling of global climate since the Late Cretaceous results from decreasing partial pressure of atmospheric CO2 (pCO2). However, details on how and why the carbon cycle evolved and how it would affect pCO2 have not been fully resolved. While the long-term decline of pCO2 might be caused by the decrease of volcanic degassing through the negative feedback...
متن کاملTracing Continentalweathering Using Lithium and Magnesium Isotopes: Insights from the Chemical Weathering of Columbia River Basalts and Mass Balance Modeling
Title of Document: TRACING CONTINENTALWEATHERING USING LITHIUM AND MAGNESIUM ISOTOPES: INSIGHTS FROM THE CHEMICAL WEATHERING OF COLUMBIA RIVER BASALTS AND MASS BALANCE MODELING Xiao-Ming Liu, Ph.D., 2013 Directed By: Professors Roberta L. Rudnick & William F. McDonough, Department of Geology Chemical weathering is an important mechanism that changes the mass and composition of the continental c...
متن کاملPetrology and Presentation: A Seven-Stage Model forGeodynamic Evolution of the Northeast Region of Birjand,East of Northern Lut, Eastern Iran
The northeast region of Birjand is located in Lut structural and geological province. In this area we can distinguish two separate volcanic rock groups: intermediate to acidic volcanic rocks, including dacite, andesite, rhyolite and trachyandesite; and basic rocks, including basaltic andesite, mugearite and basalt. In this region, intermediate to acidic rocks, which belong to the Eocene-Miocene...
متن کاملFactors Influencing Soil Formation and Evolution in Banaft Region "Kasilian Mazandaran Watershed"
Extended abstract 1- Introduction Climate, terrain condition, vegetation coverage, parent materials, and time are among the factors that affect the soil formation and contribute to such soil properties as porosity, apparent and actual specific gravities, and clay and carbonate contents. The forest soils have been consistently regarded for their high content of organic matter and suitable stru...
متن کامل